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Introduction 

TCGRID (Turbomachinery C-GRID) is a three-dimensional grid generation code for turbomachinery blades. 
The code can generate single or multiblock grids that are compatible with various analysis codes including SWIFT 
and ADPAC. Single- block grids can be either C-type or H-type, and can be for linear cascades or annular blade 
rows. Multi-block grids must use a C-type grid around the blade, and can add an H-grid in the inlet region and O-
grids in the hub or tip clearance regions. 

A brief description of TCGRID and an example of a compressor grid are given in [1]. Examples of turbine grids 
generated with TCGRID can be found in [2]. “Test Cases Included with TCGRID” on pp. 3 shows examples of grids 
for turbines, axial compressors, and centrifugal impellers that have been generated with TCGRID. 

All geometry manipulation in TCGRID is done using parametric splines, so the code can handle axial, mixed, 
and centrifugal flow machines. Monotone splines added in version 400 follow slope discontinuities without 
overshoots. The input blade geometry can be translated, rescaled, and flipped tangentially, and full control of 
spacing along the blade surface is provided. Blade-to-blade grids are generated using an efficient elliptic solver that 
gives control of spacing and angles at the blade and outer periodic boundary. Grids are reclustered spanwise with 
control over spacing at the hub, casing, and clearance regions. 

TCGRID is written completely in Fortran 90 and runs as a quick batch job on Linux, Mac, or Windows 
computers. Code input is supplied in a text file with grid parameters specified using convenient namelist input. Hub 
and casing geometries are specified as coordinate pairs. Blade shapes may be specified in MERIDL format, Crouse-
Tweedt design code format, or specified directly by the user as coordinate triplets. Some printed output is provided. 
No graphical output is provided, but grid files can be read directly and plotted using the public domain CFD 
visualization code PLOT3D, or the commercial codes FieldView, TecPlot, and EnSight CFD. 

This documentation briefly describes how the TCGRID code works. Instructions for dimensioning, compiling, 
and running TCGRID are given for Linux systems, but the process should be similar for Mac or Windows systems. 
The namelist input variables and the hub, tip, and blade input are described in detail. Finally, an outline of the code 
structure given and the output file format is described. 
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Features of TCGRID 

Applications 
Linear cascades 

Axial compressors and turbines 

Isolated blade rows or multistage machines 

Centrifugal impellers and mixed-flow machines without splitters 

Radial diffusers 

Pumps 

Grid Types 
C- or H-grids around blades 

C-grid with upstream H-grid 

O-grids in hub- and tip-clearance regions 

Curved inlet and exit boundaries for closely coupled blade rows 

Multistage machines can be modeled by merging C-grids for individual blades using a utility called MULTIX. 

Formulation 
Blade-to-blade grids generated with a fast elliptic solver (GRAPE) 

Spanwise reclustering done using monotone cubic splines 
H-grids in inlet regions and O-grids in clearance gaps generated algebraically 

Input 
Namelist input of grid parameters 

Hub and casing geometries input in (z, r) coordinates 

Blade geometries input in general (z, r, ) coordinates, or MERIDL format (z, r, upper, lower) or (z, r, ) 

Printed Output 
Input parameters 

Convergence information for blade-to-blade grids 

Spanwise output of inlet, leading edge, trailing edge, and exit coordinates 

Index file with grid size information for SWIFT or other CFD codes 

Grid & Debug Output 
Grid files are written as binary data in standard PLOT3D format 

Intermediate grid files can be output for debug purposes. Debug files include reclustered blade coordinates, the 2-D 

throughflow grid, and 2-D blade-to-blade grids that may be useful for other purposes. 

Computer Requirements 
Fortran 90 compatible compiler  

Runs as a quick batch process on Linux, Mac, or Windows computers 

Graphical Output 
No graphical output is provided with TCGRID, but access to some CFD visualization package is absolutely 

necessary to view and evaluate new grids. Grid files are in standard PLOT3D format and can be read directly and 

plotted with the public-domain CFD visualization tool PLOT3D or the commercial tools FieldView, TecPlot, or 

EnSight CFD. Check the following web sites for more information. 

 

PLOT3D : http://www.nas.nasa.gov/Research/Software/swdescription.html 

TecPlot:  http://www.tecplot.com/ 

FieldView: http://www.ilight.com/ 

EnSight CFD: http://www.ensightcfd.com/ 



 3

Test Cases Included with TCGRID 

 

Goldman annular turbine vane 

 

• A simple extruded vane with constant-radius endwalls 

• 1-block grid 

 

Space Shuttle Main Engine (SSME) fuel turbine 

 

• 2-stage high-pressure turbine 

• 7-block grid with clearances over the rotors 

• Individual grids are run separately and assembled with 

multix 

 

Large, Low-Speed Centrifugal Impeller 

 

• 5 ft. diameter backswept research impeller 

• Single-block H-grid 
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Rotor 37 

 

• Transonic inlet rotor for a core compressor 

• 3-block grid with tip clearance  

 

Stage 35 

 

• Transonic inlet stage for a core compressor 

• 3-block rotor grid with tip clearance 

• 2-block stator grid with hub clearance 

• Individual grids are run separately and assembled with 

multix 

 

Rotor 67 

 

• Low aspect ratio transonic fan 

• 3-block grid with tip clearance 
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Unzipping, Compiling, and Running TCGRID 

The following documentation is for a Linux system. The general process should be the same on a Mac or PC, but 
you may need to change details. 

TCGRID is supplied as a zip file. It will unzip into a directory with the same name as the file. This 
documentation should be in the main directory. There are subdirectories for source code and test cases. To unzip: 

unzip tcgrid_305.zip 

Compiling 

Go to the src directory and edit the Makefile. Compiler commands are set for the Intel Linux compiler, 
FC = ifort –O2 
Change the commands as necessary for your compiler. Moderate optimization usually works well. Near the 

bottom of the Makefile there may be a line that moves the executable to a bin directory. Keep or remove this line as 
desired. 

mv tcgrid ~/bin 
Save the file and exit. 
 

Edit modules.f90 and change the maximum array size if desired. All large arrays are dynamically allocated, but 
some small working arrays are statically dimensioned using parameters ni, nj, and nk. Modifying these parameters 
will not substantially change the memory required by TCGRID. 

module param 
!  maximum dimensions of any grid, used for work arays 
   integer,parameter::ni=321, nj=161, nk=95, nb=2*ni 
end module param 

Save the file and exit. 
 

Run make. Move the executable to a directory in your path.  
Clean up object and executable files if desired by running 

make clean 

Running TCGRID 

TCGRID is run as a standard Linux process: 
tcgrid < input_file > output_file 
The output file is not too useful so you may want to ignore the “> output_file”, and just let the output scroll up 

the screen. The last page of output does print coordinates of the inlet boundary, blade leading and trailing edges, and 
exit boundary, which can be useful. 

Output Files 

The output grid file is written to Fortran unit 1 (fort.1). A SWIFT index file is also written to fort.10. The index 
file is in ASCII format and can be edited as desired. Debug grid files may be written to fort.11 - fort.19, depending 
on idbg flags set in the input file. All grid files are written as unformatted binary files. They can be used 
immediately by SWIFT, and can be read into CFD visualization codes using the unformatted PLOT3D option. 
Output files should be renamed after running TCGRID, 

mv fort.1  case_name.xyz 
mv fort.10 case_name.ind 

Default File Names  

Setting iopen=1 in the namelist input causes all files to be opened explicitly with a default file name. For 
example, the grid will be named grid.xyz. Other file names are given with the iopen options under “ &nam3 -
Algorithm Parameters” on page 12. By using the default file names you can avoid the file renaming steps, but you 
may want to rename the files with more descriptive names later. 
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TCGRID Input – Overview 

TCGRID input consists of five blocks of namelist input (&nam1 - &nam5), followed by a title, then hub, tip, and 
blade coordinates. All grids require the title, hub, tip, and blade coordinate input, (see Hub, Tip, and Blade Input, 
page 16). Many of the namelist variables are initialized in modules.f90. Required input variables that are not 
initialized are listed below, followed by some comments regarding optional variables. All variables are described in 
detail in the section entitled Namelist Input. 

C-grids 

To generate the main C-grid around the blade set the following variables: 

&nam1 - im, jm, km, merid, itl, icap. 
• To change clustering along the blade surface, along the span, and upstream and downstream of the blade, use 

iclus, icluss, and iclusw, respectively. 
• Use iclus2d=1 to cluster the meridional grid using the same spanwise clustering as the input blade. For simple, 

ruled blades use iclus2d=0. 
• For complex flow paths increase the meridional grid size using i2d and k2d. 

&nam2 - nle, nte, dsle, dste, dswte, dswex, dsmin, dsmax, dshub, dstip. 
• Vary the leading- and trailing edge radii with span using dsthr. 
• Move the location of the leading edge clustering using dsra. 

&nam3 - iterm. 
• For a quick check of a new grid, set iterm=0. Use PLOT3D to check leading- and trailing edge spacings, 

surface clusterings, boundary locations, and outer boundary spacings.  
• If something goes wrong, use the array idbg(9) to generate debug grids to check input coordinates or 

intermediate grids (see Debug Output Files on page 22.) 
• Use aabb and ccdd to move points towards or away from the blade and outer boundary respectively. 

&nam4 - Inlet and exit boundary coordinates zbc and rbc are required. 

&nam5 - Most variables can defaulted. 
• Use zscale, tscale, rscale, ztrans, and tflip to manipulate the input blade coordinates. 
• Use ioble, exl, and exr to change the outer boundary shape. 
• Use iwakex and jwakex to stretch the wake grid. 
• Set iswift = 1 to generate grids for SWIFT. 

H-grids for Blades 

Most of the parameters required for C-grids are also required for H-grids. In addition, the following indices must 
be set: 

&nam1 - igch=1, ilh, itl.  

&nam2 - Spacing parameters are interpreted as follows: 
• dsin = spacing at inlet, 
• dsle = spacing at leading edge, 
• dste = spacing at trailing edge, 
• dswex = spacing at exit 
• dsmax is reset to dsmin internally. 

&nam3 - Some algorithm control parameters are reset for consistency. 
• ccdd is reset to aabb. 
• omegpq is reset to omegrs. 



 7

Linear Cascades 

To generate a grid for a linear cascade set the following:  

&nam1 - igeom = 1, 

&nam2 - gap. 

Inlet H-grid 

To generate an inlet H-grid, set the following: 

&nam1 - igin = 1, imi. 

&nam2 - dsin. 
• Since the inlet H-grid is generated algebraically from the blade C-grid, the C-grid must converge for the H-grid 

to work correctly. 

Tip Clearance O-grid 

To generate a tip clearance grid, set the following: 

&nam1 - igclt = 1, jmt, kmt. 

&nam2 - cltip, dsclt. 
• The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid is generated 

algebraically from the surrounding C-grid, the C-grid must converge for the O-grid to work correctly. 

Hub Clearance O-grid 

To generate a hub clearance grid, set the following: 

&nam1 - igclh = 1, jmh, kmh. 

&nam2 - clhub, dsclh. 
• The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid is generated 

algebraically from the surrounding C-grid, the C-grid must converge for the O-grid to work correctly. 

Multistage Grids – Grid requirements 

Multistage C-grids are generated one blade row at a time, and then are merged using a Fortran program called 
multix.f. The individual grids must meet certain requirements: 

 
1.  Use identical hub and tip coordinates for all blade rows. 
2.  The blades must be in the correct location and orientation. Use ztrans to move the blades axially, and tflip to 

flip the - coordinates if necessary.  
3.  The grids must match at an interface between the blades. Set the exit boundary coordinates of grid 1 to the 

inlet boundary coordinates of grid 2. Place the interface midway between the blades, or close enough to 
blade 2 to get a good C-grid. 

4.  For SWIFT, the grids must overlap exactly one cell at the interface. On grid 1 set dswex to give a fine 
spacing near the exit, and set dslap = dswex. This resets the grid spacing at the exit from approximately 
dswex to exactly dslap. On grid 2 set dsmax2 = dslap1. This will cause the dummy grid line from grid 2 to 
overlap grid 1 by dsmax. (Not necessary for ADPAC.) 

5.  The relative circumferential spacing between the grids does not matter. 
6.  SWIFT version 400 now allows non-point-matched grids at mixing planes. Neighboring grids can have 

differennt numbers of points and discontinuous spacings in the spanwise direction. However, using 
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continuous grids across mixing planes may improve solution continuity, and will simplify printed and 
graphical output at a given spanwise location. 

Multistage Grids – Multix Utility and Makgrid.csh Script 

Multix.f merges two PLOT3D files and two index files without much checking. The steps are as follows: 

 
1.  Compile multix.f and make sure the executable is in your path. 
2.  Run TCGRID for grid 1. Rename fort.1 to name1.xyz. Rename fort.10 to name1.ind. 
3.  Run TCGRID for grid 2. Rename fort.1 to name2.xyz. Rename fort.10 to name2.ind.  
4.  Run multix. It will prompt for name1 and name2. 
5.  The output files are named out.xyz and out.ind. Rename them as desired 
6.   Repeat steps 1 5 to add more files if necessary. 
7.  The index file out.ind will have the correct format and grid sizes, but you will have to edit it and change 

connectivity, boundary condition flags, etc. as described in the SWIFT documentation. 
 

Multistage test cases include a c-shell script called makegrid.csh that generates the complete multistage grid for 
that case. 
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Namelist Input 

Defaults are given in angle brackets, <default=value> or <default.> If no default is given the value MUST be 
input. Relevant figures are given in parentheses (Fig. #.) 

&nam1 - Grid Size Parameters 

Many grid size parameters are illustrated in Figs. 1, 2, and 4. 

merid Flag for type of blade input. See Hub, Tip, and Blade Input on page 16, and Figs. 5 and 6 for 

complete descriptions of the blade input formats. 

 = 0 Blade input in stacked sections, (z, r, ). Completely general, (Fig. 5). <default>. 

 = 1 Blade input in Crouse/Tweedt design code format, (z, r, ) (Fig. 5). Like merid=0 but ordered 

differently. 

 = 2 Blade input in MERIDL format, (z, r, -upper, -lower), (Fig. 6). 

 = 3 Blade input in MERIDL format, (z, r, , ), (Fig. 6). 

im Grid size in i- (streamwise) direction, (Figs. 1, 2). 

jm Grid size in j- (blade-to-blade) direction, (Figs. 1, 2). 

km Grid size in k- (spanwise) direction, (Fig. 4). 

itl C-grid: i-index of lower trailing edge point, (Fig. 1). 

 H-grid: number of cells downstream of the trailing edge, (Fig. 2). 

icap Number of cells on the inlet part of the C-grid, equally-spaced. Remaining cells are distributed 

over the periodic boundaries. Increase icap to pull points towards inlet, and vice-versa, (Fig. 1). 

igeom Flag that tells whether grid will be for a linear cascade or an annular blade row. 

 = 0 Annular blade row <default>. 

 = 1 Linear cascade. 

iclus Flag for type of clustering along the blade surfaces. 

 = 1 Hyperbolic tangent clustering - smoothest, but may be sparse at blade center if im is too small 

<default>. 

 = 2 Hermite polynomial clustering - more uniform, but may grow too quickly near leading and 

trailing edges. Good for large im. 

icluss Same as iclus, but for clustering in the spanwise direction. 

iclusw Same as iclus, but for streamwise clustering downstream in the wake, and also upstream for an H-

grid. 

iclus2d Flag that sets spanwise clustering of the meridional grid on which the blade-to-blade grids are 

generated. 

 = 0 Meridional grid is equally spaced between hub to tip. Good for ruled blades. 
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 = 1 Meridional grid has approximately the same spanwise clustering as the input blade sections. 

Use this option if the input blade sections are spaced non-uniformly along the span to resolve twist 

or fillets. <default>. 

iclusmt Flag for clustering scheme used to generate the meridional grid. If the default fails (set idbg(3) = 1 

and plot the meridional grid written to fort.13,)  then try iclusmt = 0. 

 = 0 Original clustering scheme distributes points on the hub and tip equally with arc length. Can 

fail for unusual flow paths. 

 = 1 Distributes points on the hub, then searches for the nearest point on the tip. Usually produces a 

nearly orthogonal grid, but can fail for steps in the casing <default>. 

i2d Number of i- (streamwise) points on the coarse meridional grid used to define the passage. 

Typically 21 for an axial machine, 41 or more for a centrifugal. <default = 21, max=101>. 

k2d Number of k- (spanwise) points on the coarse meridional grid used to define the passage. Should 

be roughly equal to the number of input blade sections nbs. <default = 11, max=50>. 

Parameters for H-grids Around Blades 

igch Flag to set C- or H-grids around blade 

 = 0 C-grid <default>. 

 = 1 H-grid. 

ilh H-grid: number of cells upstream of the leading edge, (Fig. 2). 

itl H-grid: number of cells downstream of the trailing edge, (Fig. 2). 

Parameters for Inlet H-grids 

igin Flag to generate an inlet H-grid ahead of the main C-grid. Not used if igch = 1. 

 = 0 No inlet H-grid <default>. 

 = 1 Generate inlet H-grid. 

imi Number of i- (streamwise) points in the inlet H-grid. Only used if igin = 1. 

Parameters for Clearance Gap O-grids 

igclh, igclt Flag to generate hub or tip clearance O-grids. 

 = 0 No clearance O-grid <default>. 

 = 1 Generate clearance O-grid. 

jmh, jmt Number of j- (radial) points in the hub or tip clearance grid, (Fig. 4). Only used if igclh = 1 or  

 igclt = 1. 

kmh, kmt Number of k- (spanwise) points in the hub or tip clearance grid, (Fig. 4). Only used if igclh = 1 or 

igclt = 1. 
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&nam2 - Grid Spacing Parameters 

All spacing parameters must be input in the units desired for the final grid. All spacing parameters named “ds…” 
refer to spacing along some arc length, and not in a particular coordinate direction. Values suggested as “e.g.” 
should give a good initial guess but may need to be modified after examining the initial grid. 

nle Number of points equally-spaced around the blade leading edge, typically 15. 

nte Number of points equally-spaced around the blade trailing edge, typically 10. 

dsle Spacing around the leading edge at the hub, e.g. rle / nle . 

dste Spacing around the trailing edge at the hub, e.g. rte / nte . 

dsthr “ds tip-to-hub ratio.” Dsle, dste, and dswte are taken as hub values and are varied linearly with 

span to this factor at the tip. Allows the leading edge radius, etc. to increase or decrease (usually 

decrease) with span. <default = 1>. 

dswte “ds wake trailing edge.” Spacing away from the trailing edge on the wake cut of C-grid (Fig. 1) or 
periodic boundary of an H-grid (Fig. 2). Should be  dste.  

dswex “ds wake exit.” Spacing at exit of the grid. Should be 5-10 percent of the distance between the 

trailing edge and the exit. (Figs. 1, 2). 

dsmin Wall spacing at the blade. Typically chord/10,000 for viscous grids, (Figs. 1, 2). Note: SWIFT’s 

blade surface output gives y+, the grid spacing at the wall in turbulent wall units. y+ should be 
O(1 5) . If y+ is too large, you may need to rerun your grid with dsmin, dshub, and dstip reduced 

accordingly.  

dsmax Spacing away from the periodic boundary, e.g. (midspan pitch)/jm, (Figs. 1, 2). 

dsin Spacing away from the inlet of inlet H-grid, (Figs. 1, 2). Only used if igin = 1 or igch = 1. 

dsra “ds ratio.” (Pressure surface arc length)/(total surface arc length). Used to locate the center of the 

leading edge clustering on the blade. The clustering is centered about dsra  (total surface arc 

length.) Typical values are 0.5 for symmetrical blades, about 0.49 for compressor blades, and 

about 0.45 for highly-cambered turbine blades. Only used for general blade input, merid = 0. 

 = 0 TCGRID assumes that there are the same number of blade input coordinates on each surface 

and clusters about the median input point <default>. 

gap Blade row pitch for a linear cascade. Only used if igeom = 1. If igeom = 0 the pitch is set by 

nblade. <default = 1>. 

rcorn Radius for the front corner of the C-grid, (Fig. 1.) Usually 0., but the inlet grid may be smoother 

with rounded corners. <default = 0.0. Ignored if igin = 1>. 

Spanwise Clustering Parameters 

The spanwise grid is clustered in 1 to 3 regions as shown in Fig. 4. The stretching function in each region is set 
by icluss. A central region is always used between the hub and casing, with wall spacings dshub and dstip.  If clhub 
> 0 or cltip  > 0, hub or tip clustering regions are added that use the following clustering parameters: 

dshub, dstip Spanwise spacing at the hub or tip, e.g. span/10,000 for viscous grid. (Fig. 4). 

clhub, cltip Hub or tip clearance height, (Fig. 4). Always needed if clearance O-grids are generated (igclh = 1 

or igclt = 1,) but may also be used to control clustering near the endwalls, possibly for a simple 

periodicity clearance model. 
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 = 0 No hub or tip region clustering. <default>. 

 > 0 Grid is clustered near the hub or tip. 

dsclh, dsclt Spanwise spacing at the blade/clearance interface, (Fig. 4). Only used if clhub > 0 or cltip > 0. 

<default = dshub or dstip.> 

Parameters for Blunt Trailing Edges 

TCGRID can wrap grids around blades with blunt trailing edges like the blades shown in Fig. 7. Blade 
coordinates may be input in one of two ways depending on the value of merid. 

merid  = 0 or 1 (general coordinate input) <default>. Blades must be input with an open trailing edge 

(Fig. 7a,) and nbase points are added automatically. 

 = 2 or 3 (MERIDL input.) Blades are always input with an open trailing edge (Fig. 6,) and then: 

 if nbase = 0 a round trailing edge is added <default>.  

 if nbase > 0 a blunt trailing edge is assumed. 

nbase Number of intervals on the blunt trailing edge (Fig. 7a). 

ibase Flag controlling the location of the wake cut line with respect to the base of the blade (Fig. 7a).  

To minimize grid distortion, choose ibase such that the cut leaves the corner with the acute angle. 

If the base is symmetric (Figs. 7c or 7d) use ibase = 0. 

 = +1 Cut line leaves the upper corner of the base. 

 =   0 Cut line leaves the center of the base <default>. 

 = -1 Cut line leaves the lower corner of the base. 

ibevel Flag for beveling the corner(s) of the base to reduce grid distortion (Fig. 7c). If ibase = 0 both 

corners are beveled. If ibase = ±1 the corner opposite the wake cut is beveled. 

 = 0 No bevel <default>. 

 = 1 Corner(s) are beveled. 

&nam3 -Algorithm Parameters 

See Sorenson’s GRAPE code documentation [5] for more information on algorithm parameters. Most values can 
be defaulted. 

iterm Number of iterations for elliptic solver, usually 50 – 150. Use iterm = 0 to check initial grid 

spacings, boundary locations, etc. <default=100>. 

idbg(9) Integer flag array with nine elements for writing intermediate debug grids to Fortran units 11  19. 

Useful for debug, graphics, and possibly for grid generation in itself. For more information see 

Table 1 on page 22.  <default = 0 0 0 0 0 0 0 0 0>.  

omega Relaxation factor for the elliptic solver, rarely changed. Acceptable values from 0.0 to 2.0 <default 

= 1.4>. 

omegpq Relaxation factor for the inner boundary forcing functions, rarely changed. Acceptable values 

from 0.0 to 2.0 Set to 0.0 for a Laplacian inner boundary. <default = 0.1>. 

omegrs Like omegpq, but for the outer boundary. 
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aabb Exponent controlling the distance that angles and spacings at the inner boundary propagate into 

the interior. Small aabb give large distances but slow convergence, and vice versa. Any value > 

0.0 is acceptable. <default = 0.45>. Set aabb = 0.35 to cluster more points near the wall, or aabb 

= 0.55 – 0.65 to reduce the clustering. 

ccdd Like aabb, but for the outer boundary. 

csmoo Smoothing coefficient for the periodic boundary. If csmoo > 0.0, a 4th-difference smoothing 

operator is applied to the periodic boundary. This allows the boundary points to float a little, 

which may reduce distortion. Not usually needed, but worth a try if the periodic boundary looks 

bad. Acceptable values from 0.0 to 1.0, typically 0.5. <default=0>. 

iopen Flag for opening output files explicitly by name. 

 = 0 Output files are written to Fortran units without explicitly opening them. <default>. 

 = 1 Output files are opened by name: 

 grid.xyz = main grid file (binary) 

 index.dat = SWIFT index file (text) 

 debugnn.xyz = debug grid files. nn = 11 – 19 refer to the Fortran unit number in Table 1 on page 

22. 

&nam4 - Boundary Coordinates 

zbc(3,2) and rbc(3,2) 

 Arrays of (z, r) coordinates that define three line segments used as boundaries for the upstream H-

grid inlet, the blade grid inlet, and the blade grid exit, as shown in Fig. 3. The line segments are 

intersected with the hub and tip geometry internally, so the coordinates need not lie exactly on the 

hub and tip. The first index indicates the segment and the second index indicates hub or tip. The 

six points must be entered in the order shown below. The coordinates of the upstream H-grid inlet 

may be set to zero if igin = 0, or for a general H-grid (igch = 1). 

 zbc = z-H-hub-in,  z-hub-in,  z-hub-ex, z-H-tip-in,  z-tip-in, z-tip-ex 

 rbc =  r-H-hub-in,  r-hub-in, r-hub-ex, r-H-tip-in,  r-tip-in, r-tip-ex 

 
The inlet and exit of the blade grid can also be specified as curves, for example at a mixing plane between 

closely-coupled blade rows.  Boundary data is input as two or more (z,r) coordinate pairs. The data is spline fit 
spanwise and does not need to match the hub and tip. 3  4 points are usually sufficient. 

inbndry Number of points on the inlet boundary, must be  2. <Default = 0, zin and rin are ignored>. 

exbndry Number of points on the exit boundary, must be  2. <Default = 0, zex and rex are ignored>. 

zin(:) Array of z-coordinates on the inlet boundary, inbndry points from hub to tip. 

rin(:) Array of r-coordinates on the inlet boundary, inbndry points from hub to tip. 

zex(:) Array of z-coordinates on the exit boundary, exbndry points from hub to tip. 

rex(:) Array of r-coordinates on the exit boundary, exbndry points from hub to tip. 
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&nam5 - Miscellaneous Parameters 

Most of these parameters can be defaulted. 

iswift Flag to set grid file for general, SWIFT, or ADPAC format. 

 = 0 General grids with no dummy grid lines. Use this option for use with other flow solvers 

<default>. 

 = 1 SWIFT code output – one or more blocks with dummy grid lines in the j-direction. 

 = 2 ADPAC code output – one or more blocks, no dummy grid lines. Note: For ADPAC the j- and 

k-directions are swapped, i.e., for x(i, j, k), j is the spanwise direction and k is the blade-to-blade 

direction. 

Scaling Parameters 

The inlet, exit, hub, tip, and blade coordinates can be rescaled and translated using the following parameters. 
Flags bcscale and htscale tell whether to modify the boundary condition and hub and tip coordinates.  

bcscale = 1 Rescale inlet and exit coordinates using zscale, rscale, and ztrans. 

 = 0 Do not rescale inlet and exit coordinates <default>. 

htscale = 1 Rescale hub and tip coordinates using zscale, rscale, and ztrans. 

 = 0 Do not rescale hub and tip coordinates <default>. 

zscale Scale factor for z-coordinates, <default = 1.> 

rscale Scale factor for r-coordinates, <default = 1.> 

ztrans Translation distance for z-coordinates, <default = 0.> 

 

Blade -coordinates can be rescaled, translated, and flipped. 

tscale Scale factor for blade -coordinates, rarely used. <default = 1>. 

ttrans  Translation distance for blade -coordinates in radians. Useful for rotating arbitrary blade 

coordinates to vertical. <default = 0>. 

tflip Flag for flipping the blade in the -direction and reordering the points. Important for setting 

correct blade orientation in multistage machines. 

 = 0 Do not flip blade -coordinates, <default>. 

 = 1 Flip blade -coordinates. 

 

Outer Boundary Shape Control Parameters 

dslap i- (streamwise) spacing at exit of C-grid. If dslap > 0, the grid lines at i = 2 and i = im-1 are 

repositioned exactly dslap from the exit, overriding dswex. For multistage machines the next blade 

row should have dsmax = dslap to give a perfect overlap of the grids. 

exl, exr Controls the shape of the left (upstream) or right (downstream) periodic boundaries of a C-grid. 

The boundaries start tangent to the mean camber line and curve to axial at a rate determined by exl 

or exr. 
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 > 10 No curvature – the boundary is a linear extension of the mean camber line. 

 > 1.5 Slow curvature to axial. 

 = 1.5 Moderate curvature to axial <default.> 

 < 1.5 Fast curvature to axial. 

 = 1 Turns the boundary abruptly to axial. 

fswake Fractional distance along the downstream periodic boundary between the trailing edge and the grid 

exit, where the j-grid lines from the trailing edge (i = itl) intersect the outer boundary, (Fig. 1). The 

default value of <1.0> places the outer boundary points directly above and below the trailing edge 

point. On some blades this can cause the j-grid lines to cross the trailing edge. In this case try 

setting fswake < 1.0 to pull the grid lines towards the downstream boundary. 

ioble The periodic outer boundary for a C-grid is made up of three segments, an upstream segment, the 

mean-camber line between the blades, and a downstream segment. The parameter ioble is an index 

that determines where the upstream segment joins the mean camber line. Values can be 11, 10, 9, 
etc. he default <11> starts the upstream segment at the leading edge. Smaller values move the 

starting point inside the passage, which can be useful if upstream part of the C-grid becomes 

distorted due to high stagger, (Fig. 1). 

iwakex Flag for stretching the outer boundary grid spacing along the wake (i-direction). 

 = 0 Equally-spaced outer boundary along the wake. 

 = 1 Stretched outer boundary along the wake, <default>. 

jwakex Flag for controlling the j-direction spacing along the trailing edge cut. 

 = 0 j-grid spacing is dsmin all along the trailing edge cut, <default>. 

 = 1 j-grid spacing expands quickly from dsmin at the trailing edge to equally-spaced at the exit. 

 = 2 Like jwakex = 1, but the expansion is more gradual. 
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Hub, Tip, and Blade Input 

Immediately following the namelist input are unformatted reads for a title, the hub and tip coordinates, and the 
blade coordinates. Unformatted ASCII reads are used throughout. 

Title 

A title of 80 characters or less is read using the following Fortran input statement: 

 
      read *,ititle 

ititle An alphanumeric string of 80 characters that is printed to the output. The character string must be 

enclosed in single quotes. 

Hub and Tip Geometry 

Hub and tip coordinate arrays are shown in Fig. 3, and read in as follows: 

 
!     read hub & tip geometry 
      read(5,*)nph,npt 
      read(5,*)(zhub(i),i=1,nph) 
      read(5,*)(rhub(i),i=1,nph) 
      read(5,*)(ztip(i),i=1,npt) 
      read(5,*)(rtip(i),i=1,npt) 

nph Number of input hub points, min = 2, max = 321. 

npt Number of input tip points, min = 2, max = 321. 

zhub, rhub z, r coordinates of the hub. 

ztip, rtip z, r coordinates of the tip. 

Blade Geometry 

The next line of input contains three variables read as follows: 

 
!     blade input 
      read(5,*)nbs,npb,nblade 

nbs Number of blade sections, max. = 50. 

npb Number of points around the blade, max. = 321. 

nblade Number of blades around the wheel, used to determine the pitch. 

 
This is followed by blade coordinates in one of four formats set by the input value of merid. The coordinates 

need not intersect the hub and tip coordinates – they are spline fit if they span the endwalls, or are linearly 
extrapolated if they do not, and the intersections are calculated by TCGRID. The four input options and their 
corresponding Fortran reads are as follows: 

merid = 0 <default> 
Blade input in general stacked sections. Cylindrical coordinates starting at the blade trailing edge, wrapping 

clockwise around the blade, and repeating the trailing edge point. Complete definition of the leading- and trailing 
edges must be given. Sections are stacked from hub to tip. Fig. 5  shows the ordering of points for merid = 0. 
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!     merid=0: blade input in stacked sections, cyl. coords. 
      if(merid == 0)then 
      do k=1,nbs 
        read(5,*)(zb(i,k),i=1,npb) 
        read(5,*)(yb(i,k),i=1,npb) 
        read(5,*)(rb(i,k),i=1,npb) 
      enddo 
      endif 

Here (zb, yb, rb) = (z, , r)-coordinates of the blade section. 

merid = 1 
Blade input in Crouse/Tweedt design code format. See Tweedt’s writeup on design code options. The point 

ordering around the blade is the same as for merid = 0, as shown in Fig. 5, but the points are stacked from tip to hub. 

 
!     merid=1: blade input in Crouse/Tweedt design code format 
      if(merid == 1)then 
      read(5,*)zbhub 
      do k=nbs,1,-1 
        read(5,*)dum 
        read(5,*)dum 
        read(5,*)(zb(i,k),i=1,npb) 
        read(5,*)(yb(i,k),i=1,npb) 
        read(5,*)(rb(i,k),i=1,npb) 
      enddo 
      endif 

Again (zb, yb, rb) = (z, , r)-coordinates of the blade section. 

zbhub A z-translation value added to all blade z-coordinates, to shift them to the same reference as the 

hub and tip. Can also be done using namelist variable ztrans. 

dum Two dummy records are included before each blade section. 

merid = 2 or 3 
Blade input in MERIDL format. See Katsanis and McNally’s report on MERIDL [3] for more information on 

MERIDL input. Unlike MERIDL, TCGRID can handle purely radial flows without rotating the coordinate system. 
MERIDL input has no leading- or trailing edge definition, but TCGRID will add leading- and trailing edge circles 
automatically. Points are input from leading edge to trailing edge, and from hub to tip. 

 
!     merid=2 or 3: blade input in MERIDL format 
      if(merid > 1)then 
      do k=1,nbs 
        read(5,*)(  zbl(i,k),i=1,npb) 
      enddo 
      do k=1,nbs 
        read(5,*)(  rbl(i,k),i=1,npb) 
      enddo 
      do k=1,nbs 
        read(5,*)(th1bl(i,k),i=1,npb) 
      enddo 
      do k=1,nbs 
        read(5,*)(th2bl(i,k),i=1,npb) 
      enddo 
      endif 
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merid = 2 (zbl, rbl, th1bl, th2bl)= (z, r, -upper-surface, -lower-surface) coordinates of the blade section, 

(Fig. 6). 

merid = 3 (zbl, rbl, th1bl) = (z, r, )-coordinates of the mean-camber-line, ordered like merid = 2 (Fig. 6.), 

 th2bl = blade tangential thickness ( -upper-surface – -lower-surface). 
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Grid Output XYZ-File 

Grids are stored using standard PLOT3D xyz-file structure. Single block grids can be read with the following 
code: 

 
      read(1)im,jm,km                         !grid dimensions 
!     read grid coordinates 
      read(1) 
     &(((x(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &(((y(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &(((z(i,j,k),i=1,im),j=1,jm),k=1,km) 
 

Multiblock grids can be read with the following code: 
      integer,dimension(3,10)::idx 
 
      read(1)ngrid                            !number of grids 
      read(1)((idx(l,ng),l=1,3),ng=1,ngrid)   !grid dimensions 
!     loop over the grids 
      do ng=1,ngrid 
        im=idx(1,ng) 
        jm=idx(2,ng) 
        km=idx(3,ng) 
 
        read(1) 
     &  (((x(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &  (((y(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &  (((z(i,j,k),i=1,im),j=1,jm),k=1,km) 
      enddo 
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TCGRID Code Description 

Grids are generated in several sequential steps. Most steps are coded as separate subroutines, many of which can 
generate PLOT3D compatible grid files for debugging purposes. The outline below lists the main subroutines of 
TCGRID, describes their function, and describes any debug files that can be generated. Indentation implies 
subroutine nesting. 

Debug files are requested using the namelist array idbg(9) described in Table 1 on page 22. In general, if idbg(n) 
= 1, a debug grid file will be generated on Fortran unit n+10. Grids are in PLOT3D format, may be 2-D or 3-D, and 
may be in multigrid format. If there is a problem with TCGRID, set idbg = 9*1 and plot fort.11 – fort.19 in turn. 
(Some files may not be generated depending on input options.) Refer to the outline below to determine at which step 
the problem occurred. 

tcgrid.f 

Main calling program. 

1. setup.f 
Reads the namelist, hub, tip, and blade input. Hub and tip geometries are input as arrays of (z,r) coordinates. 

Blade geometries are input as arrays of (z,r, ) coordinates. Several blade input formats are supported. The blade 

coordinates can be scaled and translated if desired. 

Output file: idbg(1) = 1, fort.11, 3-D blade as input (merid = 0 or 1), or blade after addition of leading- and 
trailing edge circles (merid = 2 or 3.) 
 openfile.f - Opens files by name if iopen = 1. 

2. inner.f (merid = 0 or 1) 
Reclusters points around the blade sections. The leading and trailing edges are evenly spaced. The trailing edge 
spacing is centered about the first blade input point (which is repeated as the last input point unless nbase > 0.) 
The leading- edge spacing is centered about some fraction of arc length specified using dsra. If dsra = 0.0, the 
leading edge spacing is centered about the median input point. The blade surfaces are reclustered between the 
leading and trailing edges using Hermite polynomials or hyperbolic tangent clustering. Inner.f also adds points 
on the base if nbase > 0. 

3. merfix.f (merid = 2 or 3) 
Converts MERIDL blade sections to GRAPE-type sections. Adds leading and trailing edge circles. Adds points 
on the base if nbase > 0. Reclusters points around the blade sections. 
Output file: idbg(2) = 1, fort.12, 3-D multigrid MERIDL blade as input (merid = 2 or 3). 
 lete.f - Computes leading- and trailing edge circles for the MERIDL blades using the technique in [4]. 

4. addht.f 
Adds inlet and exit points to hub and tip arrays. 

5. meridg.f 
Generates a coarse meridional grid between the hub and casing. The grid is generated algebraically by 
connecting corresponding points on the hub and casing. The number of spanwise points should be about the 
same as the number of input blade sections. If iclus2d = 0 the meridional grid is equally spaced spanwise. This 
option is good for simple ruled blades or blades defined on equally spaced stream surfaces. If iclus2d = 1 the 
meridional grid is generated with approximately the same spanwise clustering as the input blade sections. 
Output file: idbg(3) = 1, fort.13, 2-D meridional grid between hub and tip. 

6. blades.f 
Intersects spanwise lines between blade sections with the streamwise lines of the meridional grid. This gives 
new blade sections on the stream surfaces defined by the meridional grid. 
Output file: idbg(4) = 1, fort.14, 3-D blade after interpolation onto meridional grid. 
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7. grid2d.f 
Generates 2-D blade-to-blade grids along the meridional grid lines using an updated version of the 
Steger/Sorenson GRAPE code [5, 6]. GRAPE is strictly 2-D, so the 3-D blade sections are mapped to a 2-D 
(m, r ) system, where m is the meridional coordinate defined by dm2

= dz2 + dr2 , and r  is the mean radius.  
 

GRAPE requires the specification of an inner and outer boundary. For a C-grid the inner boundary is defined by 
the mapped blade coordinates plus a polynomial wake cut. A periodic outer boundary is defined using the mean 
camber line inside the passage, with polynomial extensions up- and downstream. For an H-grid the boundaries 
are defined by the blade surfaces and polynomial extensions up- and downstream. Angles and spacings are 
specified on the boundaries. The angles are set to give normal grid lines at the blade and inlet, and vertical grid 
lines at the periodic boundaries. The spacings are input using dsmin and dsmax. 

 outc.f - Generates the periodic boundary for a C-grid 
 outh.f - Generates the periodic boundary for a H-grid 
 

An initial grid is generated algebraically. GRAPE uses an SLOR scheme to solve the Poisson equations, and is 
typically iterated 50  150 iterations. Dummy grid lines may be added algebraically. 
Output file: idbg(5) = k, unit 15, 2-D blade-to-blade grid on surface k of the meridional grid. 
 grelax.f - Solves the elliptic grid equations. 
 dumgl.f - Adds dummy grid lines if iswift = 1. 
 
Finally the 2-D (m, r )  grid is transformed back to (z, r, ) . 
Output file: idbg(6) = 1, unit 16, 3-D grid before spanwise clustering. 

8. fill3d.f 
Reclusters the 2-D grids spanwise using either Hermite polynomials or hyperbolic tangent clustering to make 
the final 3-D grid. Separate clustering functions are used in the hub clearance, blade, and tip clearance regions. 

9. ginlet.f 
Generates an algebraic H-block upstream of the blade if igin = 1. The boundaries are defined by the hub and 
casing, and the inlet boundaries of the H-grid and C-grids. Transfinite interpolation [7] is used to fill in the 
interior points. The resulting meridional grid is swept tangentially. 
Output file: idbg(7) = 1, unit 17, 3-D inlet H-grid. 

10. gtip.f 
Generates an algebraic O-grid block in the tip clearance region if igclt = 1.  
Output file: idbg(8) = 1, fort.18, 3-D tip clearance O-grid. 
Generates an algebraic O-grid block in the hub clearance region if igclh = 1. 
Output file: idbg(9) = 1, fort.19, 3-D hub clearance O-grid. 

11. ospan.f 
Prints the inlet, leading edge, trailing edge, and exit coordinates. 

12. outmg.f 
Transforms (z, r, ) coordinates to (x,y,z) and writes the grid file to fort.1 in PLOT3D format. 
Output file: fort.1, 3-D grid. 
Output file: fort.10, ASCII index file for use by the SWIFT code. Contains grid sizes and indices that may be 
needed for other codes. 
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Debug Output Files 

 
Table 1. Debug grid files available by the idbg(i) parameter. 

Index Value Unit Subroutine Grid Size PLOT3D 
Format 

Grid Description 

1 1 11 Input (npb, nbs, 1) 3d/unf General blade as input (merid = 0, 1) 

MERIDL blade after l.e. & t.e. addition  

(merid = 2, 3) 

2 1 12 Merfix (nbs, npb, 1) 3d/unf/mg MERIDL blade as input (merid = 2, 3) 

3 1 13 Meridg (i2d, k2d) 2d/unf 2-D meridional grid between hub and tip 

4 1 14 Blades (npb, k2d, 1) 3d/unf 3-D blade after interpolation onto 2-D 
grid 

5 k 15 Grid2d (im, jm, 1) 2d/unf 2-D blade-to-blade grid on section k 

6 1 16 Grid2d (im, km,k2d) 3d/unf 3-D grid before spanwise clustering 

7 1 17 Ginlet (imi, jmi, kmi) 3d/unf 3-D inlet H-grid 

8 1 18 Gtip (imt, jmt, kmt) 3d/unf 3-D tip clearance O-grid 

9 1 19 Gtip (imh,jmh,kmh) 3d/unf 3-D hub clearance O-grid 

 
Several intermediate grid files that may be useful for input checking, geometry manipulation, or debug, can be 

output from TCGRID. Intermediate grid output is triggered by setting elements of input array idbg(9) in namelist 
&nl3. Output files are written as unnamed binary files in PLOT3D format, to Fortran unit idbg_index + 10. Table 1 
gives the output files associated with each element of idbg. Possible uses for the output files are described below. 

Examining input files 
Set idbg(1) = 1 or idbg(2) = 1 to see the blade shape as input on fort.11 or fort.12. 

Checking the meridional grid 
Set idbg(3)=1 to see the meridional grid on fort.13. 

Geometry Manipulation 
Set idbg(4) = 1 to add leading and trailing edges to MERIDL files, and intersect the blade with the hub and tip. 

The modified blade shape on fort.14 could be a good starting point for another grid code. 

Debugging the grid generation process 
Set idbg(5) = k (2-D plane that you want to see.)  
Set iterm = 0 to run zero iterations. Look for crossed grid lines or bad spacings in the 2-D grid on fort.15. Set 

iterm  >  0 to see the effects of the elliptic smoother. 
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Figure 1. Top – Blade-to-blade H-C grid for a compressor blade tip section. 
Bottom: TCGRID nomenclature and input variables for blade-to-blade grids. 
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Figure 2 Top – Blade-to-blade H grid for a compressor blade hub section. 

Bottom: TCGRID nomenclature and input variables for H-grids. 
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Figure 3 – Top: Meridional H-C grid for compressor blade. 

Bottom: TCGRID nomenclature and input variables for meridional grids. 
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Figure 4 – Top: Tip clearance O-grid for a compressor blade. 

Bottom: TCGRID nomenclature and input variables for the spanwise grid. 
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Figure 5 – Blade coordinate input variables for merid = 0 or 1, 

with leading and trailing edge spacing parameters. 

 
Figure 6 – Blade coordinate input variables for merid = 2 or 3. 
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a. Effect of ibase on location of wake cut. 

 
b. Centrifugal impeller trailing edge, ibase = 1, 

nbase = 8, ibevel = 0. 
 

 

 

 
c. Inlet guide vane trailing edge, ibase = 0, nbase = 

8, ibevel = 1. 

 
d. Inlet guide vane trailing edge, ibase = 0, nbase = 

8, ibevel = 0. 
 
 

Figure 7 – Options for blunt trailing edges. 


